通过实验设计迅速掌控5 纳米晶片刻蚀机性能

我们平常做工农业实验,最忌讳的就是盲目选择实验点,或者一次只改变一个变量。因为如果要验证的因素很多的话,所要做的是实验会成倍增加, 浪费财力物力不说,还可能找不到需要的因果关系。另外一个要注意的是,试验要分步进行,逐步添加试验。不要一上来就做全因子实验。 因为不是所有因素都和输出变量有紧密关系的。也就是说,最好把实验分为两步做,既 可以节省原材料和工作时间, 又可以精确命中目标。第一步是筛选实验,用部分因子实验从众多因素中筛选出比较重要的几个。第二步是优化实验,为筛选出来的几个因素寻找选最佳工作区间。大家经常听说的中心组合试验设计,和Box-Bhnken 等响应面试验就是常用的优化实验设计。

好的实验设计,要能做到用尽可能少的试验次数,准确地发现各因素的主作用,交互作用以及如何影响相应变量的。

今天我要演示的是集成电路硅晶圆加工过程的一个实际案例。我们知道在硅晶片加工中有一个重要步骤,就是硅晶片表面的氧化刻蚀工序。目前,无论多么高端的硅晶片,无论多么复杂的2D, 3D纳米级集成线路结构,都要经过硅晶氧化刻蚀这道工序。

具体来讲,就是通过光刻机在硅晶片表面把电子线路的反光膜刻出痕迹后,暴露下面的二氧化硅层,再刻蚀二氧化硅层。刻蚀二氧化硅层要用很精密的仪器,因为二氧化硅层只有5-20纳米。一个纳米是一毫米的百万分之一,所以 非常非常的薄,肉眼一般无法看见。不同颜色的硅晶片,就是由不同厚度的表面氧化层反光频率不同造成的。刻蚀硅氧化层有干和湿两种刻法,目前比较通用的是干刻法。干刻法须把硅晶片放入一个封闭的金属室中。晶片放在一个旋转的托盘上, 氮气,氮气和水汽的混和气体被吹入封闭的室内,并吹入氟化氢气体,根据时间的长短控制刻蚀的深度。刻蚀机性能好坏的一个重要指标就是在晶片表面刻蚀的均匀度, 或一致性。均匀一致性越高,生产出来的芯片的质量就越好,良品率就越高。下面我们设计一组试验来验证一台新300mm硅晶片刻蚀机的均匀一致性水平,并找出最佳的工作区间。

现有研究表明,影响刻蚀机一致性有六个可能因素,分别为;

A:            托盘转速 (高 : +1,低:  -1)

B:            灼蚀前氮气和氮水混合气总气流量 (高 : +1,低:  -1)

C:            灼蚀前水气雾流量 (高 : +1,低:  -1)

D:            氮气和氮水混和气总气流量 (高 : +1,低:  -1)

E:            灼蚀气体流速 (高 : +1,低:  -1)

F:            氧化硅灼蚀厚度 (200 Angs.: +1, 50 Angs.: -1)

要得知被影响的一致性, 一般先要在圆晶表面选九个点,测量晶片每个点在刻蚀氧化层之前和之后高度的差。然后再用九个差的标准差除以其平均值,再取对数,就得到一致性。这个也就是统计学中经常提到的变异系数的对数。测量厚度要用极精密的仪器,因为氧化层一般只有几个纳米, 一毫米的百万分之一。

六个因素,因为每值只取高和低,全因子试验要做2^6=64个试验, 这是很多的试验,而且会浪费很多昂贵的硅晶片。但实际情况,不是所有因素都一定与一致性相关,所以 我们可以先用部分因子试验筛选出几个比较重要的,然后再集中研究这几个重要的因素。部分因子试验可以比全因子试验成倍地减少试验次数,这样我们既筛选了因素,又能优化过程,很经济划算。

现在我演示一下如何用R软件设计这个实验。R软件是免费开源的,可以在百度上搜并下载。R的软件包几乎可以设计和分析任何类型的试验, 所以推荐大家学习。

我们要先引入两个功能库,FrF2和daewr。后面分析还会用到另外 几个,具体请参考详细代码, 可以在片后网址下载。

我们需要设计一个解析度四级的试验,以保证精确度,2^(6-2)=16  个的部分因子设计就可以。主因子混淆关系用E=ABC and F=BCD,因为三个因子的交互基本可以忽略不计,所以用这种混淆可以保证E和F的可靠性,E和F是比较重要的因子。

现在看一下设计好的试验计划。这个计划可以存为EXCEL文件,研究人员可以拿去做试验并记录数据。看一下因素混淆结构,只有二次混淆,一级主因素都清楚的。再看一下一和二级的主因素相关分析图,一级之间都是白的,也就是0; 二级交互因素之间有部分混淆, 因为是部分因子设计。但如果是全因子设计,级交互因素也都是清晰的。

再在试验中心加上两个中心点,用来估测纯测量误差,最后一共18个试验点。

试验做好输入均匀一致性数据后,我们还用R来分析结果。拟合主因素加二级交互的模型,我们应注意到只有部分二级交互作用可以估测到, 其它的未估测到的,是和估测到的混淆在一起的。所以要搞清这些显著的二级交互作用到底是哪个, 按常规至少要再加做16 个试验,也就是翻倍。但我们注意到混淆的结构,其实再做8个,也是翻一半倍就够了。 只要把含有A, E, 和F的二级交互解开即可。圆晶很贵,时间也宝贵,所以再加八个当然比加16个好了。但如果不受财力限制,多做16个试验也可以。多做会提高一点精度。

用R软件再加八个试验,然后做试验,收集数据,把数据重新引入R,拟合模型,我们看到 原来混淆的二级交互估测值已经清楚了。显著相关的两个主因素是E:  灼蚀气体流速 ,和F: 氧化硅灼蚀厚度(含5  nano meter 和20 nano meter两个种类),交互作用包括,A:F,  B:C,  和稍微弱一点E:F。

这是在最佳取值位二维的试验结果和拟和线。纵轴是刻蚀一致性,数值越小一致性越好。横轴是因素位值从低到高。 这里我们看到, 在其它因素都取最佳值时,因素E,刻蚀气体流速与刻蚀的一致性成正比。所以刻蚀气体流速越高,刻蚀的一致性就越好。因素F取低值-1,也就是刻蚀5纳米厚的氧化层时,刻蚀的一致性要好于刻蚀高值位, +1,也就是20纳米厚时。

在交互作用方面,在试验取值范围内,因素A: 托盘转速 和F: 氧化硅刻蚀厚度有交互影响。具体就是,对于刻蚀厚度在5纳米厚度时,托盘转速越高一致性越好。 但当刻蚀厚度在20纳米厚度时,托盘转速越低一致性越好。同样,因素B: 刻蚀前氮气和氮水混合气总气流量,和因素C:刻蚀前水气雾流量 也有交互作用。也就是,当刻蚀前水气雾流量高的时候,刻蚀前混合气总气流量越高,反应一致性越好。相反,当刻蚀前水气雾流量低的时候,刻蚀前混合气总气流量越低,反应一致性越好。 同样,我们也会看到因素E和F也存在这种相对微弱一点的交叉关系, 即虽然刻蚀气体流速越高,一致性越好,但在刻蚀层薄的5纳米刻蚀改进程度要好于厚层的20纳米,也就是刻蚀气体对薄层刻蚀的影响率大于对厚层刻蚀的影响率。

综合各种因素,根据前后共24个试验拟合好的统计模型,我们知道了在什么情况下,刻蚀的一致性达到总体最好,也就是本机器各操作相关系数最佳的取值点。这是实际生产过程中重要的一步, 对提高半导体集成电路芯片的质量至关重要。

通过演示这个实例,我向大家介绍了如何使用部分因子试验做因素筛选,并按需要扩展试验点的方法。我们还一同了解了如何用开源的R软件设计和分析试验,搞清了几个机器设置参数与刻蚀一致性的关系。

欢迎大家观看根据本文制作的视频。点击以下链接,下载本文用到的R相关代码。

Click link below to download a text file containing the R codes used in the article. 

集成电路生产设备及过程的资格认证程序

资格认证的目的是提高生产过程和设备的效能。通过统计学方法描述和量化生产过程和设备的运行特征,成为资格认证成败的关键。

资格认证程序由三个阶段构成, 阶段一, 建立过程和设备基线;阶段二, 描述过程特征并优化, 确认其稳定性;阶段三,改进设备的可靠性,展示可制造性和竞争力。要完成每一阶段,都要用到一些重要的统计学方法。在进一步介绍如何使用统计学方法之前, 我们在本文中首先了解一下资格认证的每一个阶段及要达到的目标。下图显示的是资格认证各级段的流程图。

集成电路生产生产设备及过程资格认证三级流程图

阶段一, 建立过程和设备基线。

测量仪器, 测量系统, 过程和设备的效能

  1. 项目规划初始培训。

这是第一步,主要完成项目规划和商业运作相关内容。项目成员和客户要制定项目要达到的目标和为达到目标所需要的资源。内容包括:具体分列最后要完成的目标;数据收集的方法;结果如何发布;用以衡量成功与否的基线。开始对测量系统、生产设备、软件使用的培训,并持续贯穿于整个项目执行的全过程。

  1. 测量仪器容量测试 (Gauge Capability Study)

测量仪器容量测试的目的是保证测量工具能够完成需要的测量任务。保证持续不断的稳定性、准确性,测量值和实际值高度接近。测量数值的变化率保持在对特定目标测量允许的变动范围之内,同时意料之外的工具特征也受到统计过程控制限制。项目中的每一件测量工具都要经过测量仪器容量测试。接下来的博文中会逐段介绍几个基于统计学方法的实例。

  1. 被动数据收集

变化性的根源, 评估取样设计, 建立连续的稳定性,

  1. 总结
  2. 过程 & 设备硬件改进

阶段二, 描述过程特征并优化, 确认其稳定性。

阶段三,改进设备的可靠性,展示可制造性和竞争力。

摩托罗拉铁人方案,生产过程、工艺、软件 可靠性改进测试方案, 又称夜间设备可靠性改进计划。通过对设备极限使用, 即连续不停1000小时以上保持设备在极限端运转,模拟真实生产场景,观测并发现软、硬件出现的各种问题。一般是白天对制造流程故障溯源,提出并实施改进方案;夜间极端运转流程,观测,记录各种故障。为提高效率,工厂一般是一边实施铁人方案,一边在实际生产过程中使用改进成果。

马拉松方案,一种通过模拟真实使用状态,对设备使用效率量化的方法。  一般24小时不停,连续运转几个星期, 记录每次检修间隔的平均时长、中值、变化率等统计数字,从而推算设备在实际生产过程中的效能,以及对硅晶生产增加的成本。这种方法还可以用来检测硬件和软件的可靠性, 及早制定应对方案。